The Research Consortium for Medical Image Analysis (RECOMIA) is a not for profit organization with the objective of promoting research in the fields of artificial intelligence (AI) and medical imaging.


Follow RECOMIA on LinkedIn.
 

RECOMIA has six different AI tools available for research purposes. Learn more.

An article presenting the RECOMIA platform can be found here.

Logo m tekst.png
Presentations

Six abstracts, which were based on the RECOMIA platform, will be presented at the upcoming virtual SNMMI's 2021 Annual Meeting June 12-15, Washington DC, USA.

  • AI tool decreases inter-observer variability in the analysis of PSMA-PET/CT. Borrelli P, Ulén J, Enqvist O, Edenbrandt L, Trägårdh E.
     

  • AI-based quantification of PET/CT lesions is associated with survival in lung cancer patients. Borrelli P, Loaiza Góngora JL, Kaboteh R, Ulén J Enqvist O, Trägårdh E, Edenbrandt L.
     

  • Convolutional neural network-based automatic calculation of heart counts in 123I-MIBG SPECT imaging. Saito S, Nakajima K, Edenbrandt L, Enqvist O, Ulén J, Kinuya S.
     

  • Global cardiac atherosclerotic burden assessed by fast automated artificial intelligence-based heart segmentation in 18F-sodium fluoride PET/CT scans: head-to-head comparison with manual segmentation. Stender Skovrup S, Piri, R, Edenbrandt L, Larsson M, Enqvist O, Gerke O, Hoilund-Carlsen PF.
     

  • Fast, automated artificial intelligence-based aorta segmentation in 18F-sodium fluoride PET/CT scans: head-to-head comparison with manual segmentation. Piri R, Edenbrandt L, Larsson M, Enqvist O, Gerke O, Høilund-Carlsen PF.
     

  • PET/CT in localizing inflammation and microcalcification as potential causes of ongoing low back pain. Noddeskou-Flink AH, Piri R, Gerke O, Larsson M, Edenbrandt L, Enqvist O, Høilund-Carlsen PF, Jenssen Stochendahl M.

Publications
  • Automated analysis of PSMA-PET/CT studies using convolutional neural networks. Edenbrandt L, Borrelli P, Ulén J, Enqvist O, Trägårdh E. medRxiv 2021.03.03.21252818. Link to article.

 

  • AI-based detection of lung lesions in [18F]FDG PET-CT from lung cancer patients. Borrelli P, Ly J, Kaboteh R, Ulén J, Enqvist O, Trägårdh E, Edenbrandt L. EJNMMI Phys. 2021;8:32. Link to article.
     

  • Artificial intelligence-aided CT segmentation for body  composition analysis: a validation study. Borrelli P, Kaboteh R, Enqvist O, Ulén J, Trägårdh E, Kjölhede H, Edenbrandt L. Eur Radiol Exp. 2021;5:11. Link to article.